# Infinite partitions on free products of two Boolean algebras

Mario Jardón Santos

UNAM-CCM

Hejnice, 2020

Mario Jardón Santos

## Definition (Free product)

If A and B are two boolean algebras, their free product,  $A \oplus B$  is an algebra C such that  $A, B \leq C$ ,

$$C = \langle A \cup B \rangle := \left\{ \sum_{i < n} a_i \cdot b_i \mid n < \omega, a_i \in A, b_i \in B \right\}$$

and for all  $a \in A \setminus \{0\}$  and all  $b \in B \setminus \{0\}$ ,  $a \cdot b \neq 0$ .

Topologically if  $A \cong clop(X)$  and  $B \cong clop(Y)$ , then  $A \oplus B \cong clop(X \times Y)$ .

#### Definition (Free product)

If A and B are two boolean algebras, their free product,  $A \oplus B$  is an algebra C such that  $A, B \leq C$ ,

$$C = \langle A \cup B \rangle := \left\{ \sum_{i < n} a_i \cdot b_i \mid n < \omega, a_i \in A, b_i \in B \right\}$$

and for all  $a \in A \setminus \{0\}$  and all  $b \in B \setminus \{0\}, a \cdot b \neq 0$ .

Topologically if  $A \cong clop(X)$  and  $B \cong clop(Y)$ , then  $A \oplus B \cong clop(X \times Y)$ .

Let A be an infinite boolean algebra.

### Definition

If  $X \subseteq A \setminus \{0\}$  such that  $a \cdot b = 0$  for all  $a, b \in X$ , and such that for all  $c \in A \setminus \{0\}$  there exists  $a \in X$  such that  $a \cdot c \neq 0$ , it will be said that X is a *partition* of A.

#### Definition (Partition number)

 $\mathfrak{a}(A) := \min\{|X| \mid X \subseteq A \text{ is an infinite partition}\}.$ 

Let A be an infinite boolean algebra.

### Definition

If  $X \subseteq A \setminus \{0\}$  such that  $a \cdot b = 0$  for all  $a, b \in X$ , and such that for all  $c \in A \setminus \{0\}$  there exists  $a \in X$  such that  $a \cdot c \neq 0$ , it will be said that X is a *partition* of A.

### Definition (Partition number)

 $\mathfrak{a}(A) := \min\{|X| \mid X \subseteq A \text{ is an infinite partition}\}.$ 

 $X \subseteq A$  is said to be a *centered family* if for all  $F \in [X]^{<\omega} \setminus \{\emptyset\}, 0 \neq \prod F$ .

#### Definition

If  $p \in A \setminus \{0\}$  is such that  $p \leq x$  for all  $x \in X$ , a centered family, it will be said that p is a *pseudointersection* of X.

### Definition (Pseudointersection number)

 $\mathfrak{p}(A) := \min\{|X| \mid X \subseteq A \text{ centered with no pseudointersection}\}\$ 

Observation  $\mathfrak{p}(A) \leq \mathfrak{a}(A).$ 

 $X \subseteq A$  is said to be a *centered family* if for all  $F \in [X]^{<\omega} \setminus \{\emptyset\}, 0 \neq \prod F$ .

#### Definition

If  $p \in A \setminus \{0\}$  is such that  $p \leq x$  for all  $x \in X$ , a centered family, it will be said that p is a *pseudointersection* of X.

#### Definition (Pseudointersection number)

 $\mathfrak{p}(A) := \min\{|X| \mid X \subseteq A \text{ centered with no pseudointersection}\}\$ 

Observation  $\mathfrak{p}(A) \leq \mathfrak{a}(A).$ 

 $X \subseteq A$  is said to be a *centered family* if for all  $F \in [X]^{<\omega} \setminus \{\emptyset\}, 0 \neq \prod F$ .

#### Definition

If  $p \in A \setminus \{0\}$  is such that  $p \leq x$  for all  $x \in X$ , a centered family, it will be said that p is a *pseudointersection* of X.

## Definition (Pseudointersection number)

 $\mathfrak{p}(A):=\min\left\{|X|\mid X\subseteq A \text{ centered with no pseudointersection}\right\}$ 

# Observation $\mathfrak{p}(A) \leq \mathfrak{a}(A).$

 $X \subseteq A$  is said to be a *centered family* if for all  $F \in [X]^{<\omega} \setminus \{\emptyset\}, 0 \neq \prod F$ .

### Definition

If  $p \in A \setminus \{0\}$  is such that  $p \leq x$  for all  $x \in X$ , a centered family, it will be said that p is a *pseudointersection* of X.

## Definition (Pseudointersection number)

 $\mathfrak{p}\left(A\right):=\min\left\{|X|\mid X\subseteq A \text{ centered with no pseudointersection}\right\}$ 

## Observation

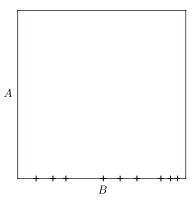
$$\mathfrak{p}\left(A\right) \leq \mathfrak{a}\left(A\right).$$

Mario Jardón Santos

4 / 14

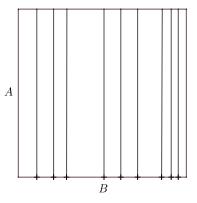
→

# Let A and B be two infinite boolean algebras. Then $\mathfrak{a}(A \oplus B) \leq \min \{\mathfrak{a}(A), \mathfrak{a}(B)\}$



크

# Let A and B be two infinite boolean algebras. Then $\mathfrak{a}(A \oplus B) \leq \min \{\mathfrak{a}(A), \mathfrak{a}(B)\}$

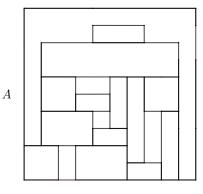


∃ >

Given A and B infinite boolean algebras  $\mathfrak{za}(A \oplus B) = \min \{\mathfrak{a}(A), \mathfrak{a}(B)\}$ ? (Asked in Cardinal Invariants on Boolean Algebras by J. Donald Monk, 2nd Edition, 2014)  $\mathfrak{zp}(A \oplus B) = \min \{\mathfrak{p}(A), \mathfrak{p}(B)\}$ ? Yes  $\mathfrak{zs}(A \oplus B) = \min \{\mathfrak{s}(A), \mathfrak{s}(B)\}$ ? Yes  $\mathfrak{zt}(A \oplus B) = \min \{\mathfrak{t}(A), \mathfrak{t}(B)\}$ ? Yes  $\mathfrak{zt}(A \oplus B) = \min \{\mathfrak{t}(A), \mathfrak{t}(B)\}$ ? Yes Given A and B infinite boolean algebras  $\mathfrak{za}(A \oplus B) = \min \{\mathfrak{a}(A), \mathfrak{a}(B)\}$ ? (Asked in Cardinal Invariants on Boolean Algebras by J. Donald Monk, 2nd Edition, 2014)  $\mathfrak{zp}(A \oplus B) = \min \{\mathfrak{p}(A), \mathfrak{p}(B)\}$ ? Yes  $\mathfrak{zs}(A \oplus B) = \min \{\mathfrak{s}(A), \mathfrak{s}(B)\}$ ? Yes  $\mathfrak{zt}(A \oplus B) = \min \{\mathfrak{t}(A), \mathfrak{t}(B)\}$ ? Yes  $\mathfrak{zt}(A \oplus B) = \min \{\mathfrak{t}(A), \mathfrak{t}(B)\}$ ? Yes Given A and B infinite boolean algebras  $\mathfrak{za}(A \oplus B) = \min \{\mathfrak{a}(A), \mathfrak{a}(B)\}$ ? (Asked in Cardinal Invariants on Boolean Algebras by J. Donald Monk, 2nd Edition, 2014)  $\mathfrak{zp}(A \oplus B) = \min \{\mathfrak{p}(A), \mathfrak{p}(B)\}$ ? Yes  $\mathfrak{zs}(A \oplus B) = \min \{\mathfrak{s}(A), \mathfrak{s}(B)\}$ ? Yes  $\mathfrak{zt}(A \oplus B) = \min \{\mathfrak{t}(A), \mathfrak{t}(B)\}$ ? Yes  $\mathfrak{zt}(A \oplus B) = \min \{\mathfrak{t}(A), \mathfrak{t}(B)\}$ ? Yes Given A and B infinite boolean algebras  $\mathfrak{La}(A \oplus B) = \min \{\mathfrak{a}(A), \mathfrak{a}(B)\}$ ? (Asked in Cardinal Invariants on Boolean Algebras by J. Donald Monk, 2nd Edition, 2014)  $\mathfrak{Lp}(A \oplus B) = \min \{\mathfrak{p}(A), \mathfrak{p}(B)\}$ ? Yes  $\mathfrak{Ls}(A \oplus B) = \min \{\mathfrak{s}(A), \mathfrak{s}(B)\}$ ? Yes  $\mathfrak{Lt}(A \oplus B) = \min \{\mathfrak{t}(A), \mathfrak{t}(B)\}$ ? Yes  $\mathfrak{Lt}(A \oplus B) = \min \{\mathfrak{r}(A), \mathfrak{r}(B)\}$ ? Yes Given A and B infinite boolean algebras  $\mathfrak{La}(A \oplus B) = \min \{\mathfrak{a}(A), \mathfrak{a}(B)\}$ ? (Asked in Cardinal Invariants on Boolean Algebras by J. Donald Monk, 2nd Edition, 2014)  $\mathfrak{Lp}(A \oplus B) = \min \{\mathfrak{p}(A), \mathfrak{p}(B)\}$ ? Yes  $\mathfrak{Ls}(A \oplus B) = \min \{\mathfrak{s}(A), \mathfrak{s}(B)\}$ ? Yes  $\mathfrak{Lt}(A \oplus B) = \min \{\mathfrak{t}(A), \mathfrak{t}(B)\}$ ? Yes  $\mathfrak{Lt}(A \oplus B) = \min \{\mathfrak{r}(A), \mathfrak{r}(B)\}$ ? Yes

# The natural question to ask

 $\mathfrak{za}\left( A\oplus B\right) =\min\left\{ \mathfrak{a}\left( A\right) ,\mathfrak{a}\left( B\right) \right\} ?$ 



B

Mario Jardón Santos

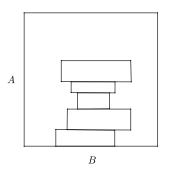
# $\mathfrak{a}\left(A\oplus B\right)\geq\min\left\{\min\left\{\mathfrak{a}\left(A\right),\mathfrak{a}\left(B\right)\right\},\max\left\{\mathfrak{p}\left(A\right),\mathfrak{p}\left(B\right)\right\}\right\}$

#### Mario Jardón Santos

·문 / 문 / 문

## $\mathfrak{a}\left(A\oplus B\right)\geq\min\left\{\min\left\{\mathfrak{a}\left(A\right),\mathfrak{a}\left(B\right)\right\},\max\left\{\mathfrak{p}\left(A\right),\mathfrak{p}\left(B\right)\right\}\right\}$

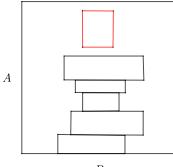
Let  $\kappa$  be a cardinal less than  $\mathfrak{p}(B)$  and  $\mathfrak{a}(A)$  and take  $\{a_{\alpha} \cdot b_{\alpha} \mid \alpha < \kappa\}$ , a disjoint family on the free product. Case 1:  $\forall E \in [\kappa]^{\geq \omega} \exists F \in [E]^{<\omega} \forall \alpha \in E \ b_{\alpha} \leq \sum_{\beta \in F} b_{\beta}$ . As an easy consequence, there exists an infinite (maximal) centered family of  $b_{\alpha}$ .



Mario Jardón Santos

# $\mathfrak{a}\left(A\oplus B\right)\geq\min\left\{\min\left\{\mathfrak{a}\left(A\right),\mathfrak{a}\left(B\right)\right\}\max\left\{\mathfrak{p}\left(A\right),\mathfrak{p}\left(B\right)\right\}\right\}$

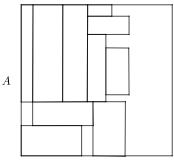
We take b, a pseudointersection of these  $b_{\alpha}$ 's and a an element disjoint to these  $a_{\alpha}$ 's and we are done.





 $\mathfrak{a}\left(A\oplus B\right)\geq\min\left\{\min\left\{\mathfrak{a}\left(A\right),\mathfrak{a}\left(B\right)\right\}\max\left\{\mathfrak{p}\left(A\right),\mathfrak{p}\left(B\right)\right\}\right\}$ 

Case 2:  $\exists E \in [\kappa]^{\geq \omega} \forall F \in [E]^{<\omega} \exists \alpha \in E \ b_{\alpha} \nleq \sum_{\beta \in F} b_{\beta}$ . Let it be maximal.

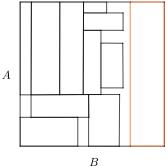


B

(< Ξ) ≥</p>

# $\mathfrak{a}(A \oplus B) \geq \min\{\min\{\mathfrak{a}(A), \mathfrak{a}(B)\}\max\{\mathfrak{p}(A), \mathfrak{p}(B)\}\}$

There is  $b \in B$  which is not covered by  $b_{\alpha}$  with  $\alpha \in E$ .



# $\mathfrak{a}\left(A\oplus B\right)\geq\min\left\{\min\left\{\mathfrak{a}\left(A\right),\mathfrak{a}\left(B\right)\right\},\max\left\{\mathfrak{p}\left(A\right),\mathfrak{p}\left(B\right)\right\}\right\}$

If  $A = P(\omega) / Fin = B$ , previous theorem says that  $\mathfrak{p} \leq \mathfrak{a} \left( P(\omega) / Fin \oplus P(\omega) / Fin \right) \leq \mathfrak{a}$ 

#### Theorem

# $\min\left\{ \mathfrak{a},\mathfrak{s}\right\} \leq\mathfrak{a}\left( P\left( \omega\right) /Fin\oplus P\left( \omega\right) /Fin\right)$

This theorem also holds for any pair of homogeneous boolean algebras.

#### Question

Is it possible that  $\mathfrak{s} = \mathfrak{a} \left( P(\omega) / Fin \oplus P(\omega) / Fin \right) < \mathfrak{a}$ ? (Hechler?)

# $\mathfrak{a}\left(A\oplus B\right)\geq\min\left\{\min\left\{\mathfrak{a}\left(A\right),\mathfrak{a}\left(B\right)\right\},\max\left\{\mathfrak{p}\left(A\right),\mathfrak{p}\left(B\right)\right\}\right\}$

If  $A = P(\omega) / Fin = B$ , previous theorem says that  $\mathfrak{p} \leq \mathfrak{a} \left( P(\omega) / Fin \oplus P(\omega) / Fin \right) \leq \mathfrak{a}$ 

#### Theorem

$$min \{\mathfrak{a}, \mathfrak{s}\} \leq \mathfrak{a} \left( P(\omega) / Fin \oplus P(\omega) / Fin \right)$$

This theorem also holds for any pair of homogeneous boolean algebras.

#### Question

Is it possible that  $\mathfrak{s} = \mathfrak{a} \left( P(\omega) / Fin \oplus P(\omega) / Fin \right) < \mathfrak{a}$ ? (Hechler?)

# $\mathfrak{a}\left(A\oplus B\right)\geq\min\left\{\min\left\{\mathfrak{a}\left(A\right),\mathfrak{a}\left(B\right)\right\},\max\left\{\mathfrak{p}\left(A\right),\mathfrak{p}\left(B\right)\right\}\right\}$

If  $A = P(\omega) / Fin = B$ , previous theorem says that  $\mathfrak{p} \leq \mathfrak{a} \left( P(\omega) / Fin \oplus P(\omega) / Fin \right) \leq \mathfrak{a}$ 

#### Theorem

# $\min\left\{\mathfrak{a},\mathfrak{s}\right\}\leq\mathfrak{a}\left(P\left(\omega\right)/Fin\oplus P\left(\omega\right)/Fin\right)$

This theorem also holds for any pair of homogeneous boolean algebras.

#### Question

Is it possible that  $\mathfrak{s} = \mathfrak{a} \left( P(\omega) / Fin \oplus P(\omega) / Fin \right) < \mathfrak{a}$ ? (Hechler?)

# $\mathfrak{a}\left(A\oplus B\right)\geq\min\left\{\min\left\{\mathfrak{a}\left(A\right),\mathfrak{a}\left(B\right)\right\},\max\left\{\mathfrak{p}\left(A\right),\mathfrak{p}\left(B\right)\right\}\right\}$

If  $A = P(\omega) / Fin = B$ , previous theorem says that  $\mathfrak{p} \leq \mathfrak{a} \left( P(\omega) / Fin \oplus P(\omega) / Fin \right) \leq \mathfrak{a}$ 

#### Theorem

$$min \{ \mathfrak{a}, \mathfrak{s} \} \leq \mathfrak{a} \left( P(\omega) / Fin \oplus P(\omega) / Fin \right)$$

This theorem also holds for any pair of homogeneous boolean algebras.

#### Question

Is it possible that  $\mathfrak{s} = \mathfrak{a} \left( P(\omega) / Fin \oplus P(\omega) / Fin \right) < \mathfrak{a}$ ? (Hechler?)

# $\mathfrak{a}\left(A\oplus B\right)\geq\min\left\{\min\left\{\mathfrak{a}\left(A\right),\mathfrak{a}\left(B\right)\right\},\max\left\{\mathfrak{p}\left(A\right),\mathfrak{p}\left(B\right)\right\}\right\}$

If  $A = P(\omega) / Fin = B$ , previous theorem says that  $\mathfrak{p} \leq \mathfrak{a} \left( P(\omega) / Fin \oplus P(\omega) / Fin \right) \leq \mathfrak{a}$ 

#### Theorem

$$min \{ \mathfrak{a}, \mathfrak{s} \} \leq \mathfrak{a} \left( P(\omega) / Fin \oplus P(\omega) / Fin \right)$$

This theorem also holds for any pair of homogeneous boolean algebras.

## Question

Is it possible that 
$$\mathfrak{s} = \mathfrak{a} \left( P(\omega) / Fin \oplus P(\omega) / Fin \right) < \mathfrak{a}$$
? (Hechler?)

Mario Jardón Santos

14/14

·듣▶ · < ⋿▶ · ·

크